

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 7

wA = 2

wB = 7 wC = 12

wD = 2

cA,B = 2 cA,C = 1

cB,D = 2 cC,D = 1

Fig. 6. Considered Directed Acyclic Graph (DAG).

• dCP−P (C) = 25 · 1518 ≈ 20.8
• dCP−P (B) = 25 · 1418 ≈ 19.4
• dCP−P (A) = 25 · 2

18 ≈ 2.8.

4.1.2.2 Equal slack approach (CP-E): In the previous
approach, the available time was divided proportionally
to the latest finish time of the tasks. Unfortunately, such
an approach can also lead to unfair division of the slack
time, as it favors tasks that cannot be parallelized. Consider
a fork-join DAG of identical tasks with the source node
A, the sink node Z , and 10 independent tasks in-between
that can be executed in parallel. In such a situation, the
previous approach gives a third of the time to task A, a
third of the time to task Z , and also a third of the time to
the remaining tasks. Such an approach is reasonable when
unlimited number of servers are available and minimizing
a makespan is the main objective. However, when power
efficiency is the factor, the approach seems not to be the best
option.

The drawback can be mitigated by dividing the available
time equally between tasks. The idea is simple but very
efficient. Assume that n(i) defines an order of tasks with
respect to the inverse of r(i), i.e., n(i) ∈ {1, 2, . . . , |N |},
n(i) 6= n(j) ⇐⇒ i 6= j, and r(i) > r(j) ⇒ n(i) < n(j).
Then, the deadlines can be defined as follows:

d(i) = t+ (d− t)n(i)
|N |

. (10)

Finally, the approach can incorporate the impact of the
execution time mixing it with the fair distribution of the
slack time. The resulting approach is called the equal slack
approach and is expressed by the formula:

dCP−E(i) = t+ r(A) + wA − r(i)+

+(d− t− r(A)− wA)
n(i)

|N |
.

(11)

In the example of Figure 6, the virtual deadlines are:

• dCP−E(D) = 18 + 7 · 44 = 25
• dCP−E(C) = 15 + 7 · 34 = 20.25
• dCP−E(B) = 14 + 7 · 24 = 17.5
• dCP−E(A) = 2 + 7 · 14 = 3.75

4.1.3 Partial Critical Path deadlines (PCP)
The second benchmark approach is based on Partial Critical
Path approach published in [1]. The detailed explanation of
the approach can be found in the cited paper. In this section,
we concentrate on a brief introduction to the approach and
on defining concepts that are shared by the approach and
our novel algorithm presented in the following section.

PCP is based on the latest finish time rank for each task,
which is similar to rank r(i) introduced for CP approach.
The only difference lay in the way expected execution time
wi are defined. In CP, they were computed as a weighted
average over execution time of the task on all possible
servers. On the other hand, in [1], they are set to the
execution time obtained on the fastest available machines.
Unfortunately, in practice, such an approach is not efficient,
especially when the fastest machines are scarce resources,
which was the case in our experiments. Therefore, we use
parameters wi defined in previous sections. Formally, the
rank is denoted by LFT (i) and is the same as the virtual
deadlines defined in (8):

LFT (i) = d− r(i), (12)

where d is the deadline of the workflow.
Another rank used in the approach is the earliest start

time rank. The rank, denoted by EST (i), expresses the
earliest moment an execution of task i can start. As for
LFT (i), also in this case we use parameters wi instead of
the execution time on the fastest machine. The parameters,
together with parameters ci,k defining the average inter-
task communication time (also defined earlier), allow us to
compute the rank using formula:

EST (i) = max
j∈δ�(i)

(cj,i + EST (j) + wj), (13)

where δ−(i) is a set of immediate predecessors of task i.
The rank should be computed recursively by traversing the
task graph downwards. For the source task the upward rank
equals t, which is the time the workflow is submitted to the
data center.

In the considered example, the ranks are as follows:

• EST (D) = 16, LFT (D) = 25
• EST (C) = 3, LFT (C) = 22
• EST (B) = 4, LFT (B) = 21
• EST (A) = 0, LFT (A) = 8.

The main idea of the algorithm is to iteratively find
partial critical paths and try to assign slower, but more
energy-efficient, servers to tasks of the path. The partial
critical path finishing at node i, which in the first iteration
is the sink node, is a path that reaches node i from node j,
which has not been assigned yet and itsEST (j)+wj+cj,i is
maximal. If there are no unassigned nodes that can precede
node i, then the partial critical path is found, all its nodes
are marked assigned, and more energy-efficient servers are
trying to be assigned to its nodes. Then the process repeats
from another node that does not have any unassigned nodes
that succeed it.

In [1], three ways of assigning more cost-efficient servers
to tasks of a partial critical path are presented. We decided
to use Fair Policy in our study, as according to [1], it not
only gives satisfactory results, but it is also computation-
ally affordable. The policy for each task orders all Pareto
optimal servers (not dominated by other servers both in
computational power and energy efficiency) with respect
to their computational power. Then, in the first iteration it
tries to replace the fastest server with the second fastest
server for each task. In the next iteration, the third fastest
server is taken into account, etc. The process ends when

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 8

all Pareto optimal servers for all tasks are checked. After
each successful replacement of servers ranks LFT andEST
are appropriately adjusted limiting possibilities of further
replacements. This observation led us to the crucial novelty
of our research, which is a deadline setting algorithm de-
scribed in the following section.

But first consider the DAG of Figure 6 executed in a
data center of Figure 2. In Section 4.1.1.1, we saw that the
expected computational efficiency is 2.35 times greater than
the computational power of the most energy-efficient cores.
The first critical partial path in the considered example con-
sists of tasks A, C, and D. Time constraints let only two of
them, namely A and D, be assigned to more energy-efficient
machines. The second critical partial path consists solely of
task B with updated EST (B) = 6.7 and LFT (B) = 18.3.
The new time constraints do not allow assigning task B
to a more energy-efficient core. Therefore, the final virtual
deadlines are:

• dPCP (D) = 25
• dPCP (C) = 19.3, as task D needs 4.7 for execution
• dPCP (B) = 18.3, as task D needs 4.7 for execution
• dPCP (A) = 6.3

4.1.4 Minimum Dependencies deadlines (MinD)
In this section, we present a novel energy-aware approach to
setting virtual deadlines. The approach is based on the idea
of prioritizing tasks with smaller dependencies on other
tasks while extending their deadlines. We say that task i
depends on task j if in the DAG representing the workflow
there is a path from i to j or from j to i. By Di we denote a
set of all tasks that are dependent on task i. Then, a priority
of task i, denoted by p(i), is expressed as follows.

p(i) = −
∑
j∈Di

wj . (14)

The tasks are ordered with respect to their priorities, and
tasks of higher priorities are considered earlier. Notice that,
as the priorities are negative, the highest priority is the
one closest to zero. For each task (taking the previously
described order into account), similarly to PCP, slower, but
more energy-efficient, servers are being tried, and if the
replacement is possible, ranks LFT and EST are appropri-
ately adjusted. As the approach starts with the least depend-
able tasks, first server replacements have relatively smaller
impact on LFT and EST in comparison to PCP; thus, they
allow for more server replacements in the future, making
the approach more efficient, which is clearly indicated in
Section 5.2.

In the example, tasks B and C have the highest priority,
but only task B can be assigned to a more energy-efficient
core. After modifying the time constraints, tasks A and D
cannot be assigned to other servers; thus, the final virtual
deadlines are:

• dMinD(D) = 25
• dMinD(C) = 22
• dMinD(B) = 21
• dMinD(A) = 2.55.

Finally, it is important to notice that MinD, similarly
to PCP, still experiences the slack time problem. In other

words, the available time can be more than enough to
execute all tasks on the most energy-efficient servers. We
understand the slack time as the amount of time a whole
workflow can be idle and still finish before its deadline,
which formally can be understood as the latest start time
of source task A minus the current time. Assuming that in
the results of MinD task i is assigned to core e(i) let us
define the slack time for MinD as follows:

s = LFT (A)− WA

fe(A)
− t (15)

In the described situation, the whole available slack time
would be assigned to the source task, as deadlines are set to
LFT. We mitigate the issue by setting virtual deadlines to:

dMinD(i) = LFT (i)− s |N | − n(i)
|N |

, (16)

where n(i) is a 1-based order of a task calculated with
respect to LFT (lower LFT s come first).

In our example, the slack time is only 0.55. Therefore,
the adjustments are not critical, i.e., dMinD(C) ≈ 21.9,
dMinD(B) ≈ 20.7, dMinD(A) ≈ 2.1. However, when work-
flow deadlines are relatively high, the approach becomes
similar to CP-E of Section 4.1.2.2

Let us now comment on the computational complexity
of MinD. To compute a priority of a single task, one ex-
ecution of DFS is needed; thus, priorities of all tasks can
be computed in O(V × E), where V is the number of
tasks of a workflow, while E is the number of edges in
a graph representing a workflow. When the priorities are
set, different core assignments are being tried. There are
V tasks, each of them can be executed on one of C cores,
and in the worst case each change in core assignment can
lead to V updates of LFT and EST . Therefore, the total
computational complexity of MinD is O(V × E + V 2 × C).

4.2 Task assignment
In the first phase of the scheduling process, virtual deadlines
for individual tasks were set. The proposed virtual deadline
setting algorithm (MinD) is not computationally expensive.
Therefore, the process can be centralized and all virtual
deadlines can be set in a gateway of a data center. The
second phase of the scheduling process deals with assigning
tasks to particular servers. We propose a way of assigning
tasks to servers named Energy-efficient DAG (ED) assign-
ment. It is a novel approach to interrelated task assignment
built on the state-of-the-art approaches to independent task
assignment that take advantage of available current link and
server usage data. As not only much greater computational
effort is needed here, but also required data are much larger,
the proposed method is partially decentralized.

Before presenting the method in detail, let us state some
general rules applied in this phase of the scheduling process.

• Each workflow has its master server knowing loca-
tions of all other tasks of the same workflow; master
server roles can move between physical machines.

• Each task is scheduled when all data required by
the task are available, i.e., a source task is scheduled
immediately, while the remaining tasks are sched-
uled when all tasks, which are its predecessor, are
finished.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 9

• Scheduling decisions are irreversible.
• Tasks are executed by a server according to their

priorities—the nearer the virtual deadline, the higher
the priority of the task.

• Execution of a task can be suspended when a higher-
priority task arrives at a server.

Let us now explain the concept of master server and
master path. Consider a workflow represented by a DAG.
One of the shortest paths in terms of hops from the source
task of the DAG to its sink task is called a master path. We
assume that a server executing a task of a master path is at
that time called a master server of the workflow. The master
server accumulates all data concerning locations of all other
tasks of the workflow. When the master server changes its
location, i.e., when two consecutive tasks of the master path
are executed on two different servers, the information is
propagated to all servers executing tasks of the workflow.
This way the master server can easily manage the whole
workflow dynamically assigning tasks to servers.

4.2.1 Consolidation-based DAG assignment (CD)
Before presenting ED, we introduced a benchmark algo-
rithm, called Consolidation-based DAG (CD) assignment,
mainly to accustom the reader with basic notions of the
issue, and to show advantages of more advanced task
assignment policies.

The consolidation-based DAG assignment is supposed
to minimize the total energy used by the data center. It
orders all servers with respect to their energy efficiency,
and assigns a task to the first server from the list that can
accommodate it without violating the virtual deadlines of
the scheduled task and all other previously assigned tasks.
When the virtual deadlines cannot be satisfied, the task is
assigned to the server that minimizes the sum of tardiness
for all the tasks assigned to this server.

4.2.2 Energy-efficient DAG assignment (ED)
The energy-efficient DAG assignment is inspired by the
HEROS methodology—recently published way of assigning
independent tasks to heterogeneous servers [13]. HEROS is
based on DENS [23] and e-STAB [21], as it relies on similar
approaches to establishing server selection and communica-
tion potential functions.

ED uses four features while selecting a server. They are
listed below in order of their importance:

1) Maximum Performance per Watt (MaxPpW) of a
server.

2) Server physical location with respect to servers exe-
cuting other tasks of the workflow.

3) Current utilization of a server.
4) Current communication potential of a server.

The final decision is based on the introduced features
in the mentioned order, but it considers only servers that
can meet all virtual deadline requirements. When servers
are tied on the first feature, the second feature is considered
taking into account only servers that are the best on the first
feature. When the tie persists, the third feature is taken into
account. Finally, if also the third feature does not resolve the
problem, the fourth feature decides.

The most important feature is MaxPpW. It is based
on Performance per Watt (PpW), which underlines energy
efficiency and can be directly used to select the currently
most energy-efficient server. A practical drawback of the
straightforward usage of PpW is the fact that servers become
the most energy-efficient when fully loaded; thus, we would
like to fully load the majority of working servers. Therefore,
we are not interested in the current PpW of a server, as the
server will immediately either reach its peak utilization or
be put into sleep. That is why, in ED, we select MaxPpW
as the most crucial feature, scheduling a task on a server
characterized by the highest value of MaxPpW.

It is important to emphasize that we do not consider
exact MaxPpW, but rather classes of MaxPpW. There is
a finite (and relatively small) group of different MaxPpW
classes and each server is assigned to one of them. The
way the number of classes and criteria that assign servers
to classes are defined depends on actual needs of a user.
In our experiments, we define one MaxPpW class for each
server type. However, users may define fewer classes, if dif-
ferent types of servers resemble similar MaxPpW, or more,
if for instance some servers are characterized by different
MaxPpW, as a result of their location in a rack.

The second most important feature is location-based. It
is defined as a minimum hop distance of a server to any of
servers that execute tasks directly preceding the currently
processed task. The value equals zero when at least one
preceding task is being executed at the server, equals two
when at least one preceding task is being executed at the
same rack, etc. The maximum value of the feature depends
on the number of tiers in a data center. A task is scheduled
on the nearest server. Obviously, for the source task the
feature is irrelevant as all servers are equally distant from
the gateway. The goal of the feature is to limit excess
communication between servers.

The third feature depends on the utilization of a server.
When DVFS is not allowed, cores are considered either
working or idle. Therefore, a single-core server can have
only two possible states, while a 4-core server has five
possible states. Such definition of the utilization does not
fulfill the main goals of the feature, which are to consolidate
tasks and prevent servers from not using all their available
computing power. In our research, we define the utilization
of a core as a fraction of the nearest time the core will be
occupied, where the nearest time is the time needed by
the core to execute the considered task assuming the core
is vacant. In this way, only servers with all cores occupied
during the nearest time are considered fully occupied.

The last feature is the actual server link load. Servers
with smaller link loads are prioritized.

As features are considered in order, it may seem that the
less important features are rarely taken into account; thus,
their importance is questionable. However, taking a closer
look dispels doubts concerning the issue. There are usually
few possible values of the first feature (usually as many as
distinct server types), and there are only few possible values
of the second feature; thus, the third feature is often taken
into account. The importance of the fourth feature is also
significant, as it decides which server should be woken up
when there are not enough available resources to execute
currently processed workflows. What is more, it is used to

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 10

select among fully loaded servers that still can execute the
task currently being assigned.

Fig. 7. ED task assignment with MinD deadlines.

Fig. 8. ED task assignment with PCP deadlines.

In Figures 7 and 8, the behavior of ED is presented
with different virtual deadlines. We assume that four in-
dependent workflows of Figure 6 almost simultaneously
appear at a data center of Figure 2. As shown in the figures,
PCP deadlines allow for faster execution of all workflows
taking 22.56 s overall, while MinD deadlines result in 24.33 s
execution time. However, MinD deadlines are more energy-
efficient needing only 36.95 kJ, while PCP deadlines need
45.25 kJ. This general tendency concerning energy efficiency
of PCP and MinD deadlines has been proven experimentally
in the following section.

5 EXPERIMENTS

Simulation results obtained while testing MinD+ED are
presented in this section. The method is compared to bench-
mark algorithms introduced in the paper. The focus is put
on differences the deadline setting methods imply and how
the task assignment algorithms influence the results.

The experiments have been performed using
GreenCloud—a popular simulation tool which offers
fine-grained simulation of modern cloud computing
environments focusing on data center communications and
energy efficiency [32]. GreenCloud is based on the ns-2
[27] simulation platform, which enables simulation of the
TCP/IP communications.

5.1 Test cases
Table 1 presents three data center configurations that were
used in the experiments. These configurations are: Basic,
Homogeneous, and Large. Basic denotes a 144-server hetero-
geneous configuration with High Performance Computing

(HPC) servers and highly energy-efficient yet computa-
tionally weak micro servers, Large denotes a similar 512-
server configuration, while Homogeneous configuration is
composed of 144 commodity servers only. The server speci-
fications are presented in Table 2.

TABLE 1
Considered three-tier configurations

Configuration Basic Homogeneous Large
Core Switches 1 1 4

Aggregation Switches 2 2 8
Access Switches 3 3 64
Servers in a Rack 48 48 8

Total Servers 144 144 512
Commodity Servers 18 144 48

HPC Servers 6 0 16
Micro Servers 120 0 448

Total MIPS 216,000 576,000 652,800

TABLE 2
Server specifications

Server Commodity HPC Micro
Core# 4 8 4

MIPS/Core 1,000 1,500 150
Total MIPS 4,000 12,000 600
Max Power 200 W 300 W 6 W
Min Power 100 W 100 W 3 W

Links connecting the access tier to the aggregation tier
and all links inside the access tier are 1 Gb/s Ethernet links,
while all other links are 10 Gb/s Ethernet links.

A mixture of different workflows has been used in
our experiment consisting, in equal proportions, of the
following workflows: Montage, Epigenomics, and Layer-by-
layer. Montage and Epigenomics are real-world workflows
[19], while Layer-by-layer is an artificial workflow commonly
used to assess scheduling algorithms [42]. Characteristics of
the workflows are briefly summarized in Table 3.

Let us now calculate parameters wi and ci,k, i.e., a mean
execution time of task i and a mean communication time
between tasks i and k, respectively. The parameters are
defined in (3) and (5). In the calculations, the capacity of
access network links, the computational power and energy
efficiency of available servers, and finally the PDF of data
center load is needed. We conduct the majority of our ex-
periment with 70% data center load. Therefore, we assume
a simplified modeling of the current data center load using
a normal distribution N (0.7, 0.03). The order of the servers
with respect to their energy efficiency is as follows: Micro
servers, HPC servers, and Commodity servers. For Basic
data center configuration results are wi = Wi

817,048,000 , which

TABLE 3
Workflow characteristics

Feature Montage Epigenomics Layer-by-layer
Avg. tasks 77.4 16.9 20.0
Instructions 582 · 109 753 · 109 300 · 109
Avg. arcs 184.8 26.6 70.9
Input comm. 2.0 MB 242.0 MB 0.1 MB
inter-task comm. 688.6 MB 3.6 MB 71.3 MB
Output comm. 1.0 MB 83.0 MB 2.5 MB

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 11

for a representative Montage workflow of 582 · 109 instruc-
tions returns an execution time of 712.3 s. As for the mean
communication time, assuming the average communication
overhead of 1 ms, we obtain ci,k =

Ci,k

23,529,500 + 0.001 for
Basic data center configuration, which for a representative
Montage inter-task communication of 688.6 MB divided
into 185 communication session returns a total inter-task
communication time of 29.5 s. The obtained parameters for
other configurations and data center loads can be found in
Table 4.

TABLE 4
Average computing and communication time of a representative

Montage workflow for different configurations and data center loads

Configuration Basic Homogeneous Large
Load 30% any 30% 70%
Computation [s] 2119.3 582.0 2910.6 878.7
Communication [s] 23.3 22.2 22.6 27.4

5.2 Numerical results

In this section, we present numerical results obtained for
a number of combinations of deadline setting approaches,
task scheduling algorithms, and data center configurations.
As for deadline setting approaches, we have tested: Pro-
portional (CP-P) and Equal slack (CP-E) approaches to
Critical Path deadlines. We have also tested Partial Critical
Path deadlines (PCP) and Minimum Dependencies dead-
lines (MinD). Concerning task scheduling algorithms, we
have tested Consolidation-based DAG assignment (CD) and
Energy-efficient DAG assignment (ED). This way we have
ended with eight possible scheduling strategies.

For each combination six independent simulations have
been performed each constituting one hour of data center
operation. During one hour, assuming 70% of data center
load, over 2k workflows have been served by Basic con-
figuration, Homogeneous configuration has served more
than 5k workflows on average, while Large configuration
has served more than 6k workflows. The results are pre-
sented in Figure 9 for Basic configuration, in Figure 10 for
Homogeneous configuration, and in Figure 11 for Large
configuration. Energy is scaled to the highest value obtained
by any scheduling strategy, while tardiness and time are
scaled to the deadline. The figures clearly indicate that all
the strategies tend to use all available time for workflows,
seldom exceeding deadlines. Still, MinD+ED does it in the
most energy-efficient way.

The numerical experiments indicate that MinD+ED out-
performs other strategies in terms of energy efficiency, beat-
ing them in wide range of tested scenarios. In general, it:

• acts like state-of-the-art deadline setting strategies in
case of homogeneous data centers

• saves more energy in heterogeneous data centers
• exhibits similar workflow running times to other

strategies

The results do not display significant differences between
particular assignment strategies, i.e., CD and ED. In fact,
the difference is not substantial, but visible and stable—ED
slightly outperforms CD in great majority of test cases.

energy tardiness time

0

0.5

1

re
la

ti
ve

va
lu

es

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 9. Results for Basic configuration.

energy tardiness time

0

0.5

1

re
la

ti
ve

va
lu

es

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 10. Results for Homogeneous configuration.

In Figure 12, energy consumption for all strategies is
presented for different relative deadlines, where value 1.0
relates to a situation in which the deadline is set to the time
needed to execute the whole workflow using a single core of
a Commodity server. The results exhibit the key advantage
of MinD over PCP, which is effectiveness in finding tasks
that can be prolonged and run on more energy-efficient
machines. When deadlines increase, it becomes easier; thus,
a relative difference between PCP and MinD decreases.

In Figure 13, an impact of load on energy-efficiency
is presented. The superiority of MinD deadlines can be
observed for greater loads. For smaller loads (less than 0.3
in our case), significant energy savings can be obtained
through consolidating tasks on single machines. MinD uses
energy-efficient machines more often that other scheduling
strategies. Still when the load is small, the strategy can lead
to underutilization of fast but non-economic machines.

In the next step, a number of experiments comparing
behavior of the proposed strategies depending on served
workflows have been performed. The results are displayed
in Figure 14. The experiments indicate that MinD+ED per-
forms better than other strategies independently of the
workflow structure.

Notice that all values describing tasks and inter-task
communications that are provided to the gateway are es-
timates and may be not precise. Figure 15 indicates relation
between the level of uncertainty of those estimates and the
consumed energy. The results confirm that all the evaluated
methods suffer from incorrect estimates. Although suffering
the most, MinD+ED still performs better than other methods
for the considered levels of uncertainty.

Finally, computational complexity of MinD+ED has been
evaluated concentrating mostly on the complexity of MinD

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 12

energy tardiness time

0

0.5

1
re

la
ti

ve
va

lu
es

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 11. Results for Large configuration.

1.0 1.5 3.0

0.8

0.9

1

relative deadline

no
rm

al
iz

ed
en

er
gy

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 12. Energy consumption for different deadlines.

0.3 0.7 0.9
0.7

0.8

0.9

1

load

no
rm

al
iz

ed
en

er
gy

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 13. Energy consumption for different loads.

Epigenomics Montage Layer-by-layer

0.7

0.8

0.9

1

no
rm

al
iz

ed
en

er
gy

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 14. Energy consumption for different DAG types.

0 20 50

0.8

0.9

1

uncertainty level [%]

no
rm

al
iz

ed
en

er
gy

CP-P+CD
CP-P+ED
CP-E+CD
CP-E+ED
PCP+CD
PCP+ED

MinD+CD
MinD+ED

Fig. 15. Energy consumption for different evaluation precisions.

deadline setting strategy, as this part of the scheduling
process is centralized. When workflows of 20 tasks on
average are considered, the mean time of executing MinD
on a single core of a modern commodity CPU is below 10
ms, a workflow of 200 tasks is processed in less than 0.2 s,
while a 2000-task workflow needs less than 5 s on average.
The results allow us to conclude that the computational
complexity is not an issue in practical implementations of
the proposed strategy.

Summarizing, MinD+ED proved to be more energy-
efficient than other state-of-the-art approaches characterized
by a similar computational complexity. MinD+ED exhibits
its superiority in heterogeneous environments. In some
cases, the better energy efficiency results in higher tardiness
of submitted workflows. However, it is not a rule.

6 CONCLUSION

We presented a novel methodology named Minimum De-
pendencies Energy-efficient DAG scheduling (MinD+ED)
that operates in data centers and dynamically schedules
workflows consisting of interrelated tasks in an energy-
efficient and communication-aware fashion. MinD+ED
clearly outperforms state-of-the-art approaches that deal
with similar problems and are of similar computational
complexity. It can reduce the server energy consumption by
almost 30% in comparison to other approaches.

In MinD+ED, the scheduling process is decomposed into
two phases. In the first phase, virtual deadlines of individual
tasks are set in the gateway of the data center. In the second
phase, tasks are dynamically assigned to servers taking
into account: characteristics of servers, physical locations of
servers, and current loads of servers and links. Additionally,
in MinD+ED, a novel way of setting virtual deadlines is
used, which is based on minimizing dependencies between
tasks. The proposed approach has been implemented in
the GreenCloud simulator. It was shown that MinD+ED
outperforms other strategies in terms of energy efficiency.

We propose multiple research directions that can follow
this research. For instance, data flows with more complex
communication models could be investigated, e.g., interme-
diary tasks (which are neither sink nor source tasks) that
communicate with a database or considering distribution of
input data among servers. Moreover, interactions in a single
system between workflows and tasks without dependencies

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 13

can be analyzed. The impact of virtualization and multi-
tenancy on the proposed scheduling approach is another
research opportunity. In this work, we statically define the
time when tasks are scheduled and virtual deadlines are
set. However, multiple choices are available, as it could be
done a priori, incrementally, or a posteriori. The comparison
of these approaches and designing an adaptive policy is an
interesting topic. Finally, adapting and testing the schedul-
ing algorithm for the future systems with more efficient
implementations of DVFS, or developing a server distance
metric which includes not only the number of hops but also
the usage of links and their latency, sound like promising
directions of extending the research.

The study could be also extended and adapted the to
multiple data centers or mobile applications scenarios. In
this context, we consider the aspect of cloud brokering [12]
as a way to share the benefits of efficient scheduling with
end-user, which could create an additional incentive to share
the descriptions of submitted workflows and tasks.

ACKNOWLEDGMENTS

This work has been supported by the European Union in
the framework of European Social Fund through the project:
Supporting Educational Initiatives of the Warsaw University
of Technology in Teaching and Skill Improvement Training
in the Area of Teleinformatics.

Moreover, the authors would like to acknowledge the
funding from National Research Fund (FNR), Luxem-
bourg in the framework of ECO-CLOUD (C12/IS/3977641),
Green@Cloud (INTER/CNRS/11/03), and IShOP (POL-
LUX/13/IS/6466384) projects.

The presented experiments were carried out using the
HPC facility of the University of Luxembourg [44].

REFERENCES

[1] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema. Cost-driven
scheduling of grid workflows using partial critical paths. IEEE
Transactions on Parallel and Distributed Systems, 23(8):1400–1414,
Aug 2012.

[2] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema. Deadline-
constrained workflow scheduling algorithms for infrastructure as
a service clouds. Future Generation Computer Systems, 29(1):158–
169, 2013. Including Special section: AIRCC-NetCoM 2009 and
Special section: Clouds and Service-Oriented Architectures.

[3] A. Beloglazov, R. Buyya, Y.C. Lee, and A.Y. Zomaya. A taxonomy
and survey of energy-efficient data centers and cloud computing
systems. Advances in Computers, 82:47–111, 2011.

[4] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design
techniques for system-level dynamic power management. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 8(3):299–
316, June 2000.

[5] T.D. Braun, H.J. Siegel, N. Beck, L.L. Blni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and
R.F. Freund. A comparison of eleven static heuristics for map-
ping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

[6] DatacenterDynamics. DCD industry census 2013: Data cen-
ter power. http://www.datacenterdynamics.com/focus/archive/
2014/01/dcd-industry-census-2013-data-center-power, January
2014.

[7] A. Dogan and F. Ozguner. Trading off execution time for reliabil-
ity in scheduling precedence-constrained tasks in heterogeneous
computing. In 15th International Parallel and Distributed Processing
Symposium, pages 8 pp.–, Apr 2001.

[8] H.M. Fard, R. Prodan, J.J.D. Barrionuevo, and T. Fahringer. A
multi-objective approach for workflow scheduling in heteroge-
neous environments. In 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pages 300–309, May
2012.

[9] C. Fiandrino, D. Kliazovich, P. Bouvry, and A.Y. Zomaya. Perfor-
mance and energy efficiency metrics for communication systems
of cloud computing data centers. IEEE Transactions on Cloud
Computing, 2015. [accepted].

[10] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and
scheduling: a survey. In E.L. Johnson P.L. Hammer and B.H.
Korte, editors, Discrete Optimization II Proceedings of the Advanced
Research Institute on Discrete Optimization and Systems Applications
of the Systems Science Panel of NATO and of the Discrete Optimization
Symposium co-sponsored by IBM Canada and SIAM Banff, Aha. and
Vancouver, volume 5 of Annals of Discrete Mathematics, pages 287 –
326. Elsevier, 1979.

[11] M. Guzek, P. Bouvry, and E.-G. Talbi. A survey of evolutionary
computation for resource management of processing in cloud
computing [review article]. IEEE Computational Intelligence Mag-
azine, 10(2):53–67, May 2015.

[12] M. Guzek, A. Gniewek, P. Bouvry, J. Musial, and J. Blazewicz.
Cloud brokering: Current practices and upcoming challenges.
IEEE Cloud Computing, 2(2):40–47, Mar 2015.

[13] M. Guzek, D. Kliazovich, and P. Bouvry. HEROS: Energy-efficient
load balancing for heterogeneous data centers. In 8th IEEE Inter-
national Conference on Cloud Computing (CLOUD), pages 1–8, June
2015.

[14] M. Guzek, J.E. Pecero, B. Dorronsoro, and P. Bouvry. Multi-
objective evolutionary algorithms for energy-aware scheduling on
distributed computing systems. Applied Soft Computing, 24:432–
446, 2014.

[15] M. Guzek, J.E. Pecero, B. Dorronsoro, P. Bouvry, and S.U. Khan. A
cellular genetic algorithm for scheduling applications and energy-
aware communication optimization. In International Conference on
High Performance Computing and Simulation (HPCS), pages 241–248,
June 2010.

[16] M. Guzek, S. Varrette, V. Plugaru, J.E. Pecero, and P. Bouvry.
A holistic model of the performance and the energy efficiency
of hypervisors in a high-performance computing environment.
Concurrency and Computation: Practice and Experience, 26(15):2569–
2590, 2014.

[17] L. Hongyou, W. Jiangyong, P. Jian, W. Junfeng, and L. Tang.
Energy-aware scheduling scheme using workload-aware consol-
idation technique in cloud data centres. Communications, China,
10(12):114–124, Dec 2013.

[18] IHS. Cloud- related spending by businesses to triple from 2011 to
2017. http://press.ihs.com/press-release/design-supply-chain/
cloud-related-spending-businesses-triple-2011-2017, February
2014.

[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and
K. Vahi. Characterizing and profiling scientific workflows. Future
Generation Computer Systems, 29(3):682 – 692, 2013. Special Sec-
tion: Recent Developments in High Performance Computing and
Security.

[20] J. Kang and S. Ranka. Assignment algorithm for energy minimiza-
tion on parallel machines. In International Conference on Parallel
Processing Workshops, pages 484–491, Sept 2009.

[21] D. Kliazovich, S.T. Arzo, F. Granelli, P. Bouvry, and S.U. Khan.
e-STAB: Energy-efficient scheduling for cloud computing applica-
tions with traffic load balancing. In IEEE International Conference
on Green Computing and Communications (GreenCom), pages 7–13,
Aug 2013.

[22] D. Kliazovich, P. Bouvry, and S.U. Khan. GreenCloud: a packet-
level simulator of energy-aware cloud computing data centers. The
Journal of Supercomputing, 62(3):1263–1283, 2012.

[23] D. Kliazovich, P. Bouvry, and S.U. Khan. DENS: Data center
energy-efficient network-aware scheduling. Cluster Computing,
16(1):65–75, 2013.

[24] D. Kliazovich, J.E. Pecero, A. Tchernykh, P. Bouvry, S.U. Khan, and
A.Y. Zomaya. CA-DAG: Communication-aware directed acyclic
graphs for modeling cloud computing applications. In IEEE 6th
International Conference on Cloud Computing (CLOUD), pages 277–
284, June 2013.

[25] W. Lin, C. Liang, J.Z. Wang, and R. Buyya. Bandwidth-aware

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2542817, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL..., NO..., ... 14

divisible task scheduling for cloud computing. Software: Practice
and Experience, 44(2):163–174, 2014.

[26] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A.V. Vasilakos. Cloud computing: Survey on energy efficiency.
ACM Comput. Surv., 47(2):33:1–33:36, 2014.

[27] S. McCanne and S. Floyd. The network simulator – ns2. http:
//www.isi.edu/nsnam/ns/, 1989. [Online; accessed 5-May-2015].

[28] J. Mei and K. Li. Energy-aware scheduling algorithm with dupli-
cation on heterogeneous computing systems. In ACM/IEEE 13th
International Conference on Grid Computing (GRID), pages 122–129,
Sept 2012.

[29] J. Mei, K. Li, and K. Li. Energy-aware task scheduling in heteroge-
neous computing environments. Cluster Computing, 17(2):537–550,
2014.

[30] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y.
Zomaya, and D. Tuyttens. A parallel bi-objective hybrid meta-
heuristic for energy-aware scheduling for cloud computing sys-
tems. Journal of Parallel and Distributed Computing, 71(11):1497–
1508, 2011.

[31] B. Mochocki, X.S. Hu, and G. Quan. Transition-overhead-aware
voltage scheduling for fixed-priority real-time systems. ACM
Trans. Des. Autom. Electron. Syst., 12(2), April 2007.

[32] University of Luxembourg. GreenCloud simulator. http://
greencloud.gforge.uni.lu, 2010. [Online; accessed 5-May-2015].

[33] A.-C. Orgerie, M.D. de Assuncao, and L. Lefevre. A survey
on techniques for improving the energy efficiency of large-scale
distributed systems. ACM Comput. Surv., 46(4):47:1–47:31, 2014.

[34] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority schedul-
ing for variable voltage processors. In International Symposium on
Low Power Electronics and Design, pages 28–33, 2001.

[35] Cisco press. Cisco data center infrastructure 2.5 design guide,
March 2010.

[36] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of
high-level full-system power models. In Proceedings of the 2008
conference on Power aware computing and systems, HotPower’08,
pages 3–7, Berkeley, CA, USA, 2008.

[37] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M.D. Dikaiakos.
Scheduling workflows with budget constraints. In S. Gorlatch
and M. Danelutto, editors, Integrated Research in GRID Computing,
pages 189–202. Springer US, 2007.

[38] M. Sharifi, S. Shahrivari, and H. Salimi. PASTA: a power-aware
solution to scheduling of precedence-constrained tasks on hetero-
geneous computing resources. Computing, 95(1):67–88, 2013.

[39] O. Sinnen. Task Scheduling for Parallel Systems (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience, 2007.

[40] O. Sinnen and L.A. Sousa. Communication contention in task
scheduling. IEEE Transactions on Parallel and Distributed Systems,
16(6):503–515, June 2005.

[41] F. Tao, Y. Feng, L. Zhang, and T.W. Liao. CLPS-GA: A case library
and pareto solution-based hybrid genetic algorithm for energy-
aware cloud service scheduling. Applied Soft Computing, 19:264–
279, 2014.

[42] T. Tobita and H. Kasahara. A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms. Journal of
Scheduling, 5(5):379–394, 2002.

[43] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing.
IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274,
Mar 2002.

[44] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management
of an academic HPC cluster: The UL experience. In International
Conference on High Performance Computing and Simulation (HPCS),
pages 959–967, July 2014.

[45] K. Ye, Z. Wu, C. Wang, B.B. Zhou, W. Si, X. Jiang, and A.Y.
Zomaya. Profiling-based workload consolidation and migration
in virtualized data centers. IEEE Transactions on Parallel and
Distributed Systems, 26(3):878–890, March 2015.

[46] J. Yu and R. Buyya. A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms. In Workshop
on Workflows in Support of Large-Scale Science, pages 1–10, June 2006.

Mateusz Żotkiewicz is an assistant professor
at Warsaw University of Technology (WUT). He
received his B.Eng. at Coventry University, M.Sc.
at WUT, and Ph.D. in Informatics at Telecom
SudParis and in Telecommunications at WUT.
He was a visiting researcher at Universitat Po-
litecnica de Catalunya in 2013 and at University
of Luxembourg in 2015. His research interests
concentrate on network planning and optimiza-
tion. He is an author of over 50 research papers
published in international telecom and OR jour-

nals and conference proceedings.

Mateusz Guzek is a research associate at the
Interdisciplinary Centre for Security, Reliability
and Trust of the University of Luxembourg. He
obtained Ph.D. diploma at the University of Lux-
embourg in 2014 in the topic of holistic, energy-
efficient optimization of cloud computing in-
frastructures. His research interests encompass
cloud computing, resource allocation, including
scheduling, load balancing and cloud brokering,
dynamic multi-agent systems organizations, and
a wide range of optimization techniques, from

heuristics and exact methods to evolutionary computation.

Dzmitry Kliazovich is a research fellow at the
Faculty of Science, Technology, and Commu-
nication of the University of Luxembourg. He
holds an award-winning Ph.D. in Information
and Telecommunication Technologies from the
University of Trento (Italy). Dr. Kliazovich is a
holder of a large number of scientific awards,
mainly from the IEEE Communications Society.
He chaired a number of highly ranked interna-
tional conferences and symposia. Dr. Kliazovich
is the author of more than 100 research papers.

He is the Associate Editor of the IEEE Communications Surveys and
Tutorials and of the IEEE Transactions of Cloud Computing journals.
He is a Vice Chair of the IEEE ComSoc Technical Committee on
Communications Systems Integration and Modeling. Dr. Kliazovich is
a coordinator and principal investigator of the Energy-Efficient Cloud
Computing and Communications initiative funded by the National Re-
search Fund of Luxembourg. His main research activities are in the
field of energy efficient communications, cloud computing, and next-
generation networking.

Pascal Bouvry is a professor in the Computer
Science and Communication research unit of the
Faculty of Science, Technology and Communi-
cation at the University of Luxembourg and a
faculty member at the Luxembourg Interdisci-
plinary Center of Security, Reliability, and Trust.
His research interest include cloud & parallel
computing, optimization, security and reliability.
Bouvry has a Ph.D. in computer science from the
University of Grenoble (INPG), France. He is on
the IEEE Cloud Computing and Elsevier Swam

and Evolutionary Computation editorial boards. Pascal is also acting
communication vice-chair of the IEEE STC on Sustainable Computing
and co-founder of the IEEE TC on Cybernetics for Cyber-Physical
Systems. A full biography is available on page http://pascal.bouvry.org.
Contact him at pascal.bouvry@uni.lu.

