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Abstract—The Internet of Things (IoT) paradigm makes
the Internet more pervasive. IoT devices are objects equipped
with computing, storage and sensing capabilities and they are
interconnected with communication technologies. Smart cities
exploit the most advanced information technologies to improve
public services. For being effective, smart cities require a
massive amount of data, typically gathered from sensors. The
application of the IoT paradigm to smart cities is an excellent
solution to build sustainable Information and Communication
Technology (ICT) platforms and to produce a large amount of
data following Sensing as a Service (S2aaS) business models.
Having citizens involved in the process through mobile crowd-
sensing (MCS) techniques unleashes potential benefits as MCS
augments the capabilities of existing sensing platforms. To this
date, it remains an open challenge to quantify the costs the
users sustain to contribute data with IoT devices such as the
energy from the batteries and the amount of data generated
at city-level. In this paper, we analyze existing solutions, we
provide guidelines to design a large-scale urban level simulator
and we present preliminary results from a prototype.

Keywords-Mobile crowdsensing, IoT, smart cities, sensing as
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I. INTRODUCTION

In IoT, everyday life objects are “smart”, i.e, they can

communicate one with each other and with users to enable

pervasive and ubiquitous computing [1]. IoT devices are

objects uniquely identifiable and are equipped with com-

munication, computing, storage and sensing capabilities.

Applying the IoT paradigm to urban scenarios is of special

interest to support the smart cities vision [2], [3]. Smart

cities aim at using ICT solutions to improve the quality

of life of citizens by provisioning innovative solutions for

public services such as healthcare, public safety and smart

transportation among others [2], [4]. The IoT paradigm is

the candidate building block to develop sustainable ICT

platforms for smart cities. Including citizens in the loop with

crowdsensing techniques augments capabilities of existing

infrastructures without additional costs and is proved to be a

win-win strategy for urban applications [5].

MCS is an appealing paradigm for sensing and has gained

a growing attention in the last years. Fig. 1 illustrates the

main elements of a MCS system. Source of data of MCS

systems are IoT devices, smartphones, tablets and wearable

devices that are becoming widespread and popular [6]. All

these devices are equipped with sensing capabilities and

utilized by large number of users, the crowd. Unlike fixed

sensor networks, MCS systems enable virtually unlimited
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Figure 1. Cloud-based MCS system

sensing possibilities. First, the devices have several types

of sensors and are periodically recharged by users. Second,

intelligence of human participants and mobility augment

context-awareness and coverage. Companies have a growing

interests in MCS. Google, for example, uses crowd-sourced

information of smartphones’ locations to offer real-time view

of congested traffic roads and has recently released a new

application, called Science Journal, which allows to gather

and visualize data from smartphones’ sensors [7]. Pokemon

Go is a extremely popular MCS framework for collecting

data like user location and movements. In the US, 10 M

users downloaded the application in two weeks.

Sensing as a Service (S2aaS) makes available to the public

data collected from sensors. Consequently, companies have

no longer the need to acquire an infrastructure to perform

a sensing campaign. IoT and MCS are key enablers in

the S2aaS model, which in turn is envisioned to play are

indispensable role in smart cities. Efficiency of S2aaS models

is defined in terms of the revenues obtained selling data and

the costs. In S2aaS, the organizer of a sensing campaign, such

as a government agency, an academic institution or business

corporation, sustains costs to recruit and compensate users

for their involvement [8]. Also the users sustain costs while

contributing data. These costs are the energy spent from the

batteries for sensing and reporting data and, eventually, the

data subscription plan if cellular connectivity is used for

reporting.

As for proper operation MCS systems require the contri-

bution from a large number of participants, the development

of real testbeds is not feasible. Therefore, simulations are

the candidate tool to assess the costs and understand the

performance of MCS systems. In this paper, we illustrate
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the key principles for the design of a MCS simulator, the

fundamental key performance indicators (KPIs) to be assessed

and we present results obtained from a prototype. The most

important features considered in the design are: i) realistic

urban environment, ii) large scale scenarios, i.e., a large

number of participants and prolonged time duration to mimic

realistic sensing campaigns.

II. BACKGROUND

This section reviews existing works in the field of perfor-

mance evaluation of MCS systems through simulations.

Tanas et al. propose to exploit Network Simulator 3 (NS-

3) for crowdsensing simulations [9]. The objective is to

assess the performance of a crowdsensing network taking

into account the mobility properties of the nodes together with

the wireless interface in ad-hoc network mode. Furthermore,

the authors present a case study about how participants

could report incidents in the public rail transport. NS-3

provides highly accurate estimations of network properties.

However, having detailed information on communication

properties comes with the cost of losing scalability. First,

it is not possible to simulate tens of thousands of users

contributing data. Second, the granularity of the duration

of NS-3 simulations is typically in the order of minutes.

Indeed, the objective is to capture specific behaviors such as

the changes of the TCP congestion window. However, the

duration of real sensing campaigns is typically in the order

of hours or days.

In [10], Farkas and Lendák present a simulation environ-

ment developed to investigate performance of crowdsens-

ing applications in an urban parking scenario. Although

the application domain is only parking-based, the authors

claim that the proposed solution can be applied to other

crowdsensing scenarios. However, the scenario considers

only drivers as type of users and users travel from one

parking spot to another one. The authors consider humans

as sensors that trigger parking events. However, to be widely

applicable, a crowdsensing simulator has to take into account

data generated from mobile and IoT devices’ sensors carried

by human individuals.

Mehdi et al. propose CupCarbon [11], which is a discrete-

event wireless sensor network (WSN) simulator for IoT and

smart cities. One of the major strengths is the possibility to

model and simulate WSN on realistic urban environments

through OpenStreetMap. To set up the simulation, the users

have to deploy on the map the various sensors and the nodes

such as mobile users, gas and media sensors and base stations.

The approach is not intended for crowdsensing scenarios with

thousands of users.

III. DESIGN PRINCIPLES AND KPI FOR MOBILE

CROWDSENSING SIMULATORS

The objective of this section is to outline the design

principles and the main key performance indicators MCS

simulators should include.

A. Design Principles

To design a novel MCS simulator, the main aspects to

consider are the scalability, the implementation in a realistic
urban environment, the user mobility and the communication
technologies.

Scalability: For proper operation, MCS systems require a

large number of participants. Hence MCS simulators should

be designed to host in the order of tens of thousands

participants moving in a wide geographical space. Each user

can potentially own several IoT and mobile devices, each

of them is a potential data contributor. Time dimension is

also important. The duration of a sensing campaign ranges

from hours to days and a simulator should address this

challenge efficiently. For instance, let us consider 10 000 users

producing data with an average of only 30 minutes per day.

Each user delivers 12 bits long samples of the accelerometer

working at 50 Hz frequency. The total amount of generated

data is 1.35 GB. Considering prolonged duration of user

contribution and additional sensors would considerably

augment the figure.

Realistic urban environment: Similarly to CupCarbon,

MCS simulators should rely on realistic urban environments

for several reasons. First, exploiting realistic layouts of

urban environments makes the simulator flexible and easy

to be adopted in any city. Second, it allows to perform

analysis providing meaningful insights to the municipality to

understand the feasibility and the potentiality of the proposed

MCS solution. Simulations over a grid or a square area as

abstraction levels lower the complexity, but do not allow to

take into account important features such as movements in

real streets and physical obstacles like buildings.

User mobility: Human mobility is defined as sequences of

spatiotemporal user movements. Understanding human mobil-

ity urban environments is crucial to design mobility patterns

that meet social behaviors and scale to the requirements of

modern smart cities [12].

Communication technologies: IoT and mobile devices are

equipped with several communication technologies, including

3G/LTE, WiFi and Bluetooth. Each communication technol-

ogy drains battery of the devices differently and can have

associated costs (e.g., users have a limited monthly plan).

B. Types of KPI

This subsection details important types of KPI that MCS

simulators should assess, including data generation and cost
evaluation.

Data Generation: Sensors work with different sampling

frequency and sample size. After data collection, mobile

devices deliver samples to a central collector using different

communication technologies. In S2aaS models, revenues are

proportional to the amount of generated data. Therefore, it is
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Table I
SENSOR AND COMMUNICATION EQUIPMENT PARAMETERS USED FOR PERFORMANCE EVALUATION

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 μA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 μA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 μA

(a) Sensor Equipment

SYMBOL VALUE UNIT DESCRIPTION

ρid 3.68 W Energy in idle mode
ρtx 0.37 W Transmission power
ρrx 0.31 W Reception power
λg 1000 fps Rate of generation of packets
γxg 0.11 · 10−3 J Energy cost to elaborate a generated packet

(b) Communication Equipment

important to assess data generation KPI such as the amount

of data generated in a given time window, or per area.

Cost evaluation: Nowadays energy consumption is one of

the most important and challenging issues worldwide. In

MCS, energy is consumed to perform sensing and reporting.

The energy spent per sensing is typically proportional to

the sampling frequency of the sensor. The energy spent for

communications depends on the technology used. Rapid

battery drain due to MCS-related applications can lower user

participation.

IV. PRELIMINARY RESULTS

Following the design principles illustrated in Section III,

this section presents a prototype for a MCS simulator

and illustrates preliminary results. The experiments aim

at assessing the amount of data gathered and the energy

consumption of the devices for sensing and reporting.

A. Simulation scenario

The developed prototype is a discrete-event simulator

supporting pedestrian mobility. Users move in the city center

of Luxembourg, which covers an area of 1.11 km2. To obtain

information about the streets of the city, the simulator exploits

a crowdsourced application providing free access to street-

level maps1 in form of a set of coordinates C containing

<latitude, longitude, altitude>. The original locations of the

users randomly assigned form the set of coordinates C. The
number of participants is set to 20 000, which corresponds

to approximately 20% of the population of Luxembourg

(115 200 inhabitants as of end 2015). The start time of the

walk is uniformly distributed between 8:00 AM and 1:30

PM. Each participant has only one mobile device and walks

for a period of time that is uniformly distributed between

10 and 30 minutes. Users move with an average velocity

speed uniformly distributed between 1 and 1.5 m/s. The

participants collect data and deliver it to the collector while

walking. Once the period of walking ends, they stop moving

and contributing. Consequently, users generate information

for a little period of time along the day, which allows to

study the system performance under a worst case scenario.

1DigiPoint: http://www.zonums.com/gmaps/digipoint.php

Data generation takes into account sensors commonly

available in current IoT and mobile devices. Table I presents

detailed information on sensors and communication param-

eters. Specifically, the sensing equipment consists of the

FXOS8700CQ 3-axis linear accelerometer from Freescale

Semiconductor [13] and the BMP280 from Bosch [14], which

is a digital pressure and temperature sensor. Data delivery

occurs using WiFi with the precise location of WiFi hotspots

in form of <latitude, longitude> 2. Without loss of generality,

considering only WiFi communication technology simplifies

the understanding of data collection and energy consumption.

The energy E spent during the transmission time τtx is

defined as:

E =

∫ τtx

0

Ptx dt, (1)

where Ptx is the power consumed for transmissions of WiFi

packets generated at rate λg [15]:

Ptx = ρid + ρtx · τtx + γxg · λg. (2)

B. Simulation results

The Section illustrates preliminary results aiming at

assessing the cost the users sustain in terms of energy

consumption.

Fig. 2 shows the distribution of user energy consumption

due to sensing and reporting. Currently the battery capacity

of mobile devices is quantified in terms of current drain

(mAh), therefore in the evaluation we assess the current

drain of the three sensors per user. As data is immediately

delivered to the collector with WiFi after being produced,

the amount of collected data impacts proportionally on

sensing and communication costs. The profile follows a

normal distribution as the users that are moving for prolonged

time periods contribute more data than users walking for

short periods. On average, each user spends for sensing

374.617 μAh (see Fig. 2(a)). The few top contributors expe-

rience a consumption that is approximately double compared

to the average. Considering that in current smartphones

the battery capacity is approximately 2000 mAh, we can

conclude that the energy spent for sensing is negligible

when compared to the energy spent for communications

2Online: https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage
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(b) Communication Cost

Figure 2. Energy spent for sensing and communication

(see Fig. 2(b)). To reduce energy spent for communications,

one possibility is to defer data transmission and not transmit

samples continuously.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This paper proposes design principles and KPI for the

development of simulators and performance evaluation of

MCS systems. We first analyze existing simulators in the field

and we pose the basis to develop a novel simulator illustrating

a prototype. The objective is to provide a simulation envi-

ronment to evaluate and assess MCS systems for different

applications and services in any real urban environments.

According to the design principles presented, the prototype

we propose takes into account realistic urban scenarios,

different communication technologies, sensors commonly

available in mobile devices and supports pedestrian mobility.

For performance evaluation, we present preliminary results

aiming to assess the energy cost the users sustain to collect

and report sensing data.

For future work we plan to further develop the prototype

in order to assess and compare the performance of MCS

systems in any real city. The simulator is projected to include

different types of citizen mobility (e.g., pedestrian, by car or

public transports) and the most widespread communication

technologies like cellular and Bluetooth in addition to WiFi.

Furthermore, the prototype will include a graphic and user-

friendly interface.
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